## Algebraic topology <br> Problem sheet \#4

Due: 15 Jan (suggested completion of non-optional problems by 27 Nov).

1. Compute the cup product structure on the Klein bottle, with both integral and mod 2 coefficients.
2. (Optional) Prove that all cup products of positive-dimensional classes in a suspension are zero. (Cf. Hatcher 3.2.2)
3. Let $X$ be $\mathbb{C P}{ }^{2}$ with an additional cell $e^{3}$ attached by a map $S^{2} \rightarrow \mathbb{C P}^{1} \subset \mathbb{C} P^{2}$ of degree $p$, and let $Y$ be $M(\mathbb{Z} / p, 2) \vee S^{4}$. Show that $X$ and $Y$ have isomorphic cohomology rings with integral coefficients, but not with coefficients in $\mathbb{Z} / p$. (Hatcher 3.2.8)
4. Show that every map $S^{2} \rightarrow T$ induces the zero map on $H_{2}$.
5. Check that if $A$ and $B$ are graded commutative rings, then $A \otimes B$ is also graded commutative.
6. Compute $\operatorname{Tor}(G, H)$ for all finitely generated abelian groups $G$ and $H$.
7. Compute the cohomology groups of the product of Moore spaces $M(\mathbb{Z} / n, i) \times M(\mathbb{Z} / m, j)$.
8. Show that the splitting in the homology Künneth theorem cannot be natural by considering the map $f \times \mathrm{id}: M(\mathbb{Z} / m, i) \times M(\mathbb{Z} / m, i) \rightarrow S^{i+1} \times M(\mathbb{Z} / m, i)$, where $f$ collapses the $i$-skeleton of $M(\mathbb{Z} / m, i)$ to a point. (Hatcher 3.B.3)
9. Show that $H_{n-1} M$ is torsion-free for any closed orientable $n$-manifold $M$.
10. For a closed orientable $2 k$-manifold $M$, show that if $H_{k-1}(M)$ is torsion-free then $H_{k}(M)$ is torsion-free. (Hatcher 3.3.25)
11. (Optional) Compute $H^{*}\left(\mathbb{R} P^{\infty} ; \mathbb{Z} / 2 k\right)$ as a ring. (Hatcher 3.2.5)
12. (Optional) Describe $H^{*}\left(\mathbb{C} P^{\infty} ; \mathbb{Z}\right)$ as a ring with finitely many multiplicative generators. (Hatcher 3.2.13)
13. (Optional) Show that there exist nonorientable 1-dimensional non-Hausdorff manifolds. (Hatcher 3.3.1)
14. (Optional) Compute the cup product structure on $H^{*}\left(\left(S^{2} \times S^{8}\right) \#\left(S^{4} \times S^{6}\right) ; \mathbb{Z}\right)$. (Hatcher 3.3.26)
15. (Optional) Show that the fundamental group of an H-space is abelian. (Hatcher 3.C.5)
16. (Optional*) Classify commutative graded Hopf algebras that are finite-dimensional in each degree, over a field of characteristic zero.
17. (Optional*) Find conditions on an H-space that ensure its cohomology is a Hopf algebra.
18. (Optional*) Find a space whose homology Pontryagin product structure is a polynomial algebra.
19. (Optional ${ }^{* *}$ ) Compute the cohomology groups of $S O(4)$ with integral coefficients.
20. (Optional ${ }^{* *}$ ) Compute the cohomology ring of $S O(4)$ with $\bmod 2$ coefficients.
21. (Optional ${ }^{* * *}$ ) Compute the cohomology ring of $S O(4)$ with integral coefficients.
