Algebraic topology Problem sheet #4 Due: 15 Jan (suggested completion of non-optional problems by 27 Nov).

- 1. Compute the cup product structure on the Klein bottle, with both integral and mod 2 coefficients.
- 2. (Optional) Prove that all cup products of positive-dimensional classes in a suspension are zero. (Cf. Hatcher 3.2.2)
- 3. Let X be \mathbb{CP}^2 with an additional cell e^3 attached by a map $S^2 \to \mathbb{CP}^1 \subset \mathbb{CP}^2$ of degree p, and let Y be $M(\mathbb{Z}/p, 2) \vee S^4$. Show that X and Y have isomorphic cohomology rings with integral coefficients, but not with coefficients in \mathbb{Z}/p . (Hatcher 3.2.8)
- 4. Show that every map $S^2 \to T$ induces the zero map on H_2 .
- 5. Check that if A and B are graded commutative rings, then $A \otimes B$ is also graded commutative.
- 6. Compute Tor(G, H) for all finitely generated abelian groups G and H.
- 7. Compute the cohomology groups of the product of Moore spaces $M(\mathbb{Z}/n, i) \times M(\mathbb{Z}/m, j)$.
- 8. Show that the splitting in the homology Künneth theorem cannot be natural by considering the map $f \times id$: $M(\mathbb{Z}/m, i) \times M(\mathbb{Z}/m, i) \to S^{i+1} \times M(\mathbb{Z}/m, i)$, where f collapses the *i*-skeleton of $M(\mathbb{Z}/m, i)$ to a point. (Hatcher 3.B.3)
- 9. Show that $H_{n-1}M$ is torsion-free for any closed orientable *n*-manifold M.
- 10. For a closed orientable 2k-manifold M, show that if $H_{k-1}(M)$ is torsion-free then $H_k(M)$ is torsion-free. (Hatcher 3.3.25)
- 11. (Optional) Compute $H^*(\mathbb{R}P^{\infty}; \mathbb{Z}/2k)$ as a ring. (Hatcher 3.2.5)
- 12. (Optional) Describe $H^*(\mathbb{C}P^\infty;\mathbb{Z})$ as a ring with finitely many multiplicative generators. (Hatcher 3.2.13)
- 13. (Optional) Show that there exist nonorientable 1-dimensional non-Hausdorff manifolds. (Hatcher 3.3.1)
- 14. (Optional) Compute the cup product structure on $H^*((S^2 \times S^8) \# (S^4 \times S^6); \mathbb{Z})$. (Hatcher 3.3.26)
- 15. (Optional) Show that the fundamental group of an H-space is abelian. (Hatcher 3.C.5)
- 16. (Optional^{*}) Classify commutative graded Hopf algebras that are finite-dimensional in each degree, over a field of characteristic zero.
- 17. (Optional^{*}) Find conditions on an H-space that ensure its cohomology is a Hopf algebra.
- 18. (Optional^{*}) Find a space whose homology Pontryagin product structure is a polynomial algebra.
- 19. (Optional^{**}) Compute the cohomology groups of SO(4) with integral coefficients.
- 20. (Optional^{**}) Compute the cohomology ring of SO(4) with mod 2 coefficients.
- 21. (Optional^{***}) Compute the cohomology ring of SO(4) with integral coefficients.