Algebraic topology
 Problem sheet \#3
 Due: 13 Nov.

1. Prove that if $f: S^{n} \rightarrow S^{n}$ has no fixed points, then $\operatorname{deg}(f)=(-1)^{n+1}$.
2. (Optional) The monoid of 2×2 matrices with integer entries, $M_{2}(\mathbb{Z})$, acts on \mathbb{R}^{2} and this action descends to an action on the quotient group $\mathbb{R}^{2} / \mathbb{Z}^{2}$, which is homeomorphic to the torus T. For any $A \in M_{2}(\mathbb{Z})$, compute the induced $\operatorname{map} A_{*}: H_{2}(T) \rightarrow H_{2}(T)$.
3. For any sequence G_{1}, \ldots, G_{n} of finitely generated abelian groups, show there is a space K with $H_{i}(K) \cong G_{i}$ for $1 \leq i \leq n$ and $H_{i}(X)=0$ for $i>n$.
4. (Optional) Consider the space obtained from the cube I^{3} by identifying each face with the opposite face by a one-quarter right-handed-screw rotation. Compute the homology of the resulting quotient space. (Hatcher 2.2.11)
5. Show that a chain complex of free abelian groups C_{n} splits as a direct sum of subcomplexes of the form $0 \rightarrow L_{n+1} \rightarrow K_{n} \rightarrow 0$. Hint: show the short exact sequence $0 \rightarrow \operatorname{Ker} \partial \rightarrow C_{n} \rightarrow \operatorname{Im} \partial \rightarrow 0$ splits and take $K_{n}=\operatorname{Ker} \partial$. (Hatcher 2.2.43a)
6. (Optional) Let $\tilde{h}_{n}(X)=\prod_{i} \tilde{H}_{i}(X) / \bigoplus_{i} \tilde{H}_{i}(X)$. Show that \tilde{h} satisfies the axioms for a homology theory, except that the wedge axiom fails. (Hatcher 2.3.2)
7. Directly compute the simplicial cohomology, with \mathbb{Z} and $\mathbb{Z} / 2$ coefficients, of $\mathbb{R} \mathrm{P}^{2}$ and of the Klein bottle. (Hatcher 3.1.6b.)
8. Give an explicit singular cocycle in $C^{1}\left(S^{1}\right)$ representing a generator of $H^{1}\left(S^{1}\right)$.
9. (Optional) Show that the contravariant functors $h^{n}(X):=\operatorname{Hom}\left(H_{n}(X), \mathbb{Z}\right)$ do not define a cohomology theory. (Hatcher 3.1.7)
10. Use the universal coefficient theorem to compute the cohomology of $\mathbb{R P}^{3}$ with coefficients in the quotient group \mathbb{Q} / \mathbb{Z}.
11. For all finitely generated abelian groups H, and an arbitrary abelian group G, compute $\operatorname{Ext}(H, G)$ in terms of G.
12. Let X be a space obtained from S^{n} by attaching an $(n+1)$-cell by a map of degree m. (This is called a Moore space and is denoted $M(\mathbb{Z} / m, n)$.) Show that the quotient $X \rightarrow X / S^{n}=S^{n+1}$ induces the trivial map on reduced homology, but not on cohomology. Deduce that the splitting of the universal coefficient theorem for cohomology cannot be natural. (Hatcher 3.1.11a)
