Algebraic Topology Michaelmas Term 2017

Christopher Douglas	Email: cdouglas@maths	Office: N2.27
Course time: T12 & W12	Website: www.christopherleedouglas.c	om/teaching/classes/at/

Course Outline

Tues.	10 Oct	Homotopy and homology.
Wed.	11 Oct	Delta complexes and simplicial homology.
Tues.	17 Oct	Singular homology and homotopy invariance.
Wed.	18 Oct	Homology long exact sequence.
Tues.	24 Oct	Excision and the Mayer–Vietoris sequence.
Wed.	25 Oct	Simplicial equals singular.
Tues.	31 Oct	Cellular homology.
Wed.	1 Nov	Axioms for homology.
Tues.	7 Nov	Cohomology and products.
Wed.	8 Nov	Properties of cohomology.
Tues.	14 Nov	Universal coefficient theorems.
Wed.	15 Nov	Cross and cup products.
Tues. Wed.	21 Nov	Künneth theorem.
	22 Nov	Manifolds and duality.

References and resources

Hatcher, *Algebraic topology*, chapters 2 and 3. math.stackexchange.com

Background references

Hatcher, *Algebraic topology*, chapter 1.Massey, *Algebraic topology: an introduction*.Stillwell, *Classical topology and combinatorial group theory*.B3.1a Topology and Groups, course notes.

Sutherland, *Introduction to metric and topological spaces*. Munkres, *Topology*. Part A Topology, course notes.

Artin, *Algebra*. Part A Algebra 2 – Rings and Modules, course notes.

Dummit and Foote, *Abstract algebra*. Part A Algebra 3 – Group Theory, course notes.

Problem Sheets

There will be six problem sheets, due at noon on Tuesday of weeks 2, 3, 4, 6, 7, and 8.

There is also a preliminary 'problem sheet 0' (not for submission), which students are advised to do during weeks 0 & 1 to revise their background knowledge.

Classes

R12:30, C. Douglas; TA: J. Steinebrunner, jan.steinebrunner@maths

F2, R. Wade, wade@maths; TA: S. Kang, kangs@maths