Algebraic topology Problem sheet #4 Due: 14 Nov.

- 1. Prove that if $f: S^n \to S^n$ has no fixed points, then $\deg(f) = (-1)^{n+1}$.
- 2. The monoid of 2×2 matrices with integer entries, $M_2(\mathbb{Z})$, acts on \mathbb{R}^2 and this action descends to an action on the quotient group $\mathbb{R}^2/\mathbb{Z}^2$, which is home-omorphic to the torus T. For any $A \in M_2(\mathbb{Z})$, compute the induced map $A_*: H_2(T) \to H_2(T)$.
- 3. For any sequence G_1, \ldots, G_n of finitely generated abelian groups, show there is a space K with $H_i(K) \cong G_i$ for $1 \le i \le n$ and $H_i(X) = 0$ for i > n.
- 4. Consider the space obtained from the cube I^3 by identifying each face with the opposite face by a one-quarter right-handed-screw rotation. Compute the homology of the resulting quotient space. (Hatcher 2.2.11)
- 5. Show that a chain complex of free abelian groups C_n splits as a direct sum of subcomplexes of the form $0 \to L_{n+1} \to K_n \to 0$. Hint: show the short exact sequence $0 \to \text{Ker } \partial \to C_n \to \text{Im } \partial \to 0$ splits and take $K_n = \text{Ker } \partial$. (Hatcher 2.2.43a)
- 6. (Optional) Let $\tilde{h}_n(X) = \prod_i \tilde{H}_i(X) / \bigoplus_i \tilde{H}_i(X)$. Show that \tilde{h} satisfies the axioms for a homology theory, except that the wedge axiom fails. (Hatcher 2.3.2)
- 7. Directly compute the simplicial cohomology, with \mathbb{Z} and $\mathbb{Z}/2$ coefficients, of $\mathbb{R}P^2$ and of the Klein bottle. (Hatcher 3.1.6b.)
- 8. Give an explicit singular cocycle in $C^1(S^1)$ representing a generator of $H^1(S^1)$.
- 9. (Optional) Show that the contravariant functors $h^n(X) := \text{Hom}(H_n(X), \mathbb{Z})$ do not define a cohomology theory. (Hatcher 3.1.7)