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Abstract. We prove that the composition of the A-theory transfer with the trace map to
stable homotopy is weakly homotopic to the Becker–Gottlieb transfer. This shows that
the Waldhausen splitting A(∗)�Q(S0)×Wh(∗) of A-theory into stable homotopy and the
Whitehead space is natural with respect to transfer maps.
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0. Introduction

In their paper “A Parametrized Index Theorem for the Algebraic K-Theory
Euler Class” [9], Dwyer, Weiss, and Williams show that the interaction of the
algebraic K-theory transfer and the Becker–Gottlieb transfer detects subtle
information about a fibration. They prove that if a fibration E→B with
homotopy finite fibers is fiber homotopy equivalent to a bundle of smooth
manifolds then the diagram

A(E)

B

�����������
�� Q(E+)

��

Diagram 1

commutes up to homotopy, where B→ A(E) is the algebraic K-theory
(A-theory) transfer, B → Q(E+) is the Becker–Gottlieb transfer, and
Q(E+)→A(E) is the inclusion.

�The author was partially supported by a scholarship from the Rhodes Trust.
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Stable homotopy and algebraic K-theory are also related by the trace map
A(E)→Q(E+) and one can consider the commutativity of the diagram

A(E)

��
B

�����������
�� Q(E+).

Diagram 2

Algebraic K-theory contains strictly more information than stable homo-
topy and so the commutativity of this diagram is a less subtle question
than that of the commutativity of the first diagram. Indeed, one expects
this diagram to commute for any fibration with homotopy finite fibers. The
difficulty proving this arises because existing descriptions of the trace map
A(E)→Q(E+) (unlike those of the inclusion Q(E+)→A(E)) are compli-
cated and generally incompatible with the natural definitions of the two
transfer maps. (See [4,5,13,14] for versions of the trace map.)

Here we consider a modified version of the above commutativity ques-
tion. Namely, does the diagram

A(E) �� A(∗)

��
B

�����������
�� Q(E+) �� Q(S0)

Diagram 3

commute up to weak homotopy? We do so using a description of the
trace map in terms of Euclidean neighborhood retracts (ENRs) that per-
mits comparison both with the standard definition of the A-theory trans-
fer and with a simple geometric description of the Becker–Gottlieb transfer.
We prove that Diagram 3 does indeed commute up to weak homotopy pro-
vided the fibration has compact fibers and a total space that is a Euclidean
neighborhood retract over its base space. These conditions are satisfied, for
example, if the fibration is locally trivial and the fiber is a finite CW com-
plex, or if both the total space and the base are finite CW complexes. Dia-
gram 4 illustrates an expanded version of Diagram 3 and provides a visual
outline of the paper.

We can reformulate the homotopy commutativity of Diagram 3 as fol-
lows: the Waldhausen splitting A(∗)�Q(S0)×Wh(∗) of A-theory into sta-
ble homotopy and the Whitehead space is natural with respect to transfer
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maps. Indeed, the Whitehead transfer B→Wh(E) is most simply defined as
the composite B→A(E)→Wh(E); the splitting of the A-theory transfer

B→A(E)→A(∗) �→Q(S0)×Wh(∗)
is therefore weakly homotopic to the product of the stable homotopy and
Whitehead transfers

B→Q(E+)×Wh(E)→Q(S0)×Wh(∗).
We expect that the same ENR method that we use to prove the com-

mutativity of Diagram 3 will prove the weak homotopy commutativity
of Diagram 2; the ENR description of the trace map A(E)→Q(E+) is
complicated only by some fiberwise technicalities. But more importantly
and along somewhat different lines, we believe that the trace map can be
defined categorically; that is, we anticipate a simple category (with cofibra-
tions and weak equivalences) whose K-theory has the homotopy type of
Q(S0) and which admits a functor (preserving cofibrations and weak equi-
valences) from the category of retractive spaces Rf (∗). If such a category
exists, this description of the trace map will dramatically simplify the con-
tents of this paper and indeed any comparison of algebraic K-theory and
stable homotopy.

The ENR approach to the trace map was suggested to us independently
by Graeme Segal and Tom Goodwillie. Lydakis [11] has also given such a
description, though with different aims. Our trace map is very similar to
his in spirit but in places rather different in detail.

Notes on Diagram 4:

The space in the lower left is the base space B=|B.| of the fibration, the space
in the upper right is A-theory A(∗)=�|N.wS.Rhf (∗)|, and the space in the
lower right is stable homotopy Q(S0)� |Q.(S0)|. The upper left path from
|B.| to �|N.wS.Rhf (∗)| is the standard construction of the A-theory trans-
fer (Section 1). The righthand vertical column is a model for the trace map
(Section 2). We prove that the wrong way maps are homotopy equivalences,
but in fact we suspect all the maps in this column except τ are homotopy

equivalences. The map |B.| β→|Q.(S0)| is the Becker–Gottlieb transfer (pro-

jected from Q(E+) to Q(S0)); the map |B.| βf→|F .| may be regarded as an
alternate Becker–Gottlieb transfer (Section 3). The map |B.| θb→�|s.E .| may
be regarded as an alternate A-theory transfer; we will compare it to the com-
position θ t.
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hocolim |N.wRhf (Ex)|

˜AB(E)

�� |N.wRhf (E)|

˜A(E)

�� �|N.wS.Rhf (E)|

A(E)

�� �|N.wS.Rhf (∗)|

A(∗)

hocolim |N.(simp(B.)/x)|

��

∼
��

�|N.wS.Rf (∗)|

∼
��
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|N. simp(B.)|

∼
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! �|N.wS.E .|

�|s.E .|

∼
��

�|˜s.E .|

∼
��

τ

��
�|t.F .|

|F .|

∼
��

|F .|

∼
��

|˜F .|

∼
��

��
|F .R|

ν

��
|V .|

Diagram 4 |Q.(S0)|Q(S0)

∼
��
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1. The A-Theory Transfer

We briefly recall the definitions of A-theory [15] and the A-theory
transfer [9]. All categories will be discrete.

We take the A-theory of X to be the K-theory of the category Rhf (X)

of homotopy-finite-CW retractive spaces over X. The category R(X) of re-
tractive spaces over X has objects spaces Y with maps Y

r
�
s
X such that s is

a section of the retraction r; a morphism of retractive spaces is a map over
and under X. The category of homotopy-finite-CW retractive spaces is the
full subcategory consisting of those objects (Y, r, s) that admit a homotopy
equivalence (in R(X)) to a space admitting a finite CW structure relative
to X. This category is a category with cofibrations and weak equivalences,
where we take the cofibrations to be maps satisfying the homotopy exten-
sion property and weak equivalences to be weak homotopy equivalences.
We will also have occasion to consider the category Rf (X) of finite-CW
retractive spaces over X. These are retractive spaces equipped with the struc-
ture of a finite CW complex relative to X; morphisms are cellular maps.

Given a category C with cofibrations and weak equivalences, we form
the simplicial category S.C of filtered objects of C. Let [k] denote the cate-
gory 0→ 1→ 2→·· ·→ k. We have the arrow category Ar[k]= [k][1]. The
objects of SkC are functors F : Ar[k]→ C satisfying the following proper-
ties. Let Fij denote the image of the arrow i→ j in C. We require that
Fii = ∗, where ∗ is the basepoint of C, for all i, and that the sequence
Fij→ Fik→ Fjk is a cofibration sequence. Morphisms in S.C are natural
transformations.

The K-theory of C is by definition �|N.wS.C|, the loop space on
the realization | − | of the nerve N. of the subcategory of weak equi-
valences w of the category of filtered objects S. of C. In particular,
A(X)=�|N.wS.Rhf (X)|.

Let E→B be a (Hurewicz) fibration with homotopy finite fibers. Given
a point p∈B, let Ep be the fiber over p. We can associate to p an object
in Rhf (E), namely Ep �E with the retraction to E given by the disjoint
union of the inclusion and the identity. Heuristically, the A-theory transfer
is induced by this map.

Precisely, the A-theory transfer B→A(E) is defined, up to homotopy,
as follows. Assume that for some simplicial set B. we have B=|B.|; in gen-
eral we can replace B by the (homotopy equivalent) realization of its set
of singular simplices. Let simp(B.) be the category of simplices of B. – the
objects of simp(B.) are the simplices of B. and a morphism y→ x from
y ∈Bn to x ∈Bm is a monotone map f : {0, . . . , n}→ {0, . . . ,m} such that
f ∗(x)=y. There is a homotopy equivalence

N. simp(B.)
∼→B.
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called “Kan’s last vertex map”. This map is given on an n-diagram in
Nn simp(B.) by

(x0
g0→x1

g1→·· · gn−1→ xn) �→g∗(xn) where g: {0, . . . , n}→{0, . . . , n}
with g(i)=gn−1 . . . gi+1gi(|xi |)

We have another homotopy equivalence

hocolim
x∈simp(B.)

|N.(simp(B.)/x)| ∼→|N. simp(B.)|

This map is induced by the trivial natural transformation
|N.(simp(B.)/x)|→∗.

Let ˜A(E) = |N.wRhf (E)| denote the “pre-group-complete A-theory”.
There is an “exact sequence group completion” map

˜A(E)=|N.wRhf (E)|→�|N.wS.Rhf (E)|=A(E).

We also have the “fiberwise pre-group-complete A-theory” ˜AB(E) =
hocolim
x∈simp(B.)

˜A(Ex), where Ex denotes the fiber of E→ B over x. Inclusion

induces an assembly-type map

˜AB(E)→˜A(E).

Now we need only construct a map

hocolim
x∈simp(B.)

|N.(simp(B.)/x)| → hocolim|N.wRhf (Ex)|=hocolim˜A(Ex)=˜AB(E).

This map is induced by a natural transformation T from x �→ (simp(B.)/x)
to x �→ wRhf (Ex); these are both functors (simp(B.))→ CAT . To each
x ∈ simp(B.) we need to associate a functor Tx : (simp(B.)/x)→wRhf (Ex).
Let y be an object in (simp(B.)/x). Set Tx(y)=Ey �Ex ; here the retrac-
tion map Ey�Ex→Ex is induced by the inclusion Ey→Ex and the iden-
tity Ex→Ex . Morphisms are also induced by the inclusion maps and are
all obviously weak equivalences.

We have constructed up to homotopy the transfer B → A(E) =
�|N.wS.Rhf (E)|. We compose this with the A-theory map induced by pro-
jecting E to a point, namely

�|N.wS.Rhf (E)|→�|N.wS.Rhf (∗)|,
and refer also to the composite B→A(E)→A(∗) as the A-theory transfer.
Finally, we note that we can substitute for the category of homotopy finite
retractive spaces the category of finite retractive spaces; that is, the map

�|N.wS.Rhf (∗)| ∼←�|N.wS.Rf (∗)|
is a homotopy equivalence [15].
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2. The A-Theory Trace

We present a definition of the trace map A(∗)→Q(S0) using Euclidean
neighborhood retracts (ENRs) that will make transparent the relationship
between the A-theory transfer and the Becker–Gottlieb transfer. As men-
tioned in the introduction, this trace map is quite similar to Lydakis’ and
we refer to his paper [11] where convenient. The main references for the
definitions and properties of ENRs are Dold’s papers [7,8].

We think heuristically of the trace map as follows. To a pointed finite CW
complex X, that is an object of Rf (∗), we want to associate a map Sn→Sn,
for some n. Suppose X is embedded in R

n and r :U→X is a neighbor-
hood retraction. Then there is a subneighborhood Vε ⊂U so that the map
ν:Vε→Dn

ε , given by ν(x)= x− r(x), is proper. (Here Dn
ε denotes the open

ε-ball in R
n.) Thus after one point compactification, the maps R

n←↩Vε ν→Dn
ε

yield a map ξ(X) :Sn→Sn. This is simply a version of the Pontryagin–Thom
construction. Note that the degree of ξ(X) is the euler characteristic of X. If
X=Y+, that is if the basepoint of X is disjoint, then the trace of X is morally
ξ(Y ); thus the degree of the trace is the reduced euler characteristic.

Now given any self map f :X→X, let F be the fixed points of f . Then
there is a neighborhood Vε of F in R

n so that the map νf :Vε→Dn
ε , given

by νf (x)=x−f r(x), is proper. One point compactification produces a map
ξf (X):Sn→Sn. The degree of ξf (X) is a homotopy invariant of f and only
depends on f in a neighborhood of the fixed set F . In particular, given any
space X in Rf (∗), let f :X→X be a map homotopic to the identity that
retracts a neighborhood of the basepoint to the basepoint. Then F splits
as F ′ �∗. Because of this splitting we can form the map ξf (X;F ′) associ-
ated only to a neighborhood of the fixed points F ′, and we take this map
to represent the trace of X.

In Section 2.1 we produce maps from A-theory A(∗) to the K-theory
of appropriate categories of ENRs. This will allow us to use embeddings
and neighborhood retractions, as just described. In Section 2.2, we first dis-
cuss a simplicial set of “fixed point problems” that encodes the informa-
tion (namely the self map and fixed point set) needed to perform the above
variant of the Pontryagin–Thom construction. Second, we formalize condi-
tions on the self map that ensure, among other things, that the basepoint
splits off the fixed point set. Finally, we associate a fixed point problem to
an ENR with an appropriate self map. In Section 2.3 we construct a map
from the set of fixed point problems to stable homotopy.

2.1. A-THEORY VIA EUCLIDEAN NEIGHBORHOOD RETRACTS

In Section 1 we described the A-theory transfer B→A(∗)=�|N.wS.Rf (∗)|.
Again, we identify Rf (∗) with the category of pointed finite CW complexes.
Finite CW complexes are compact ENRs, and we now define maps from
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A(∗) to the K-theory of appropriate categories of ENRs. Recall that a
space E is by definition a Euclidean neighborhood retract if it admits an
embedding φ :E→R

n in some Euclidean space and a retraction r :U→
φ(E) of some neighborhood U of the image of φ.

DEFINITION 2.1 ([11]). The category E of pointed ENRs has objects
compact ENRs with basepoint, and morphisms based maps. It can be
considered a category with cofibrations and weak equivalences where the
cofibrations are inclusions and the weak equivalences are weak homotopy
equivalences.

The inclusion functor Rf (∗)→E induces a map in K-theory

�|N.wS.Rf (∗)|→�|N.wS.E |.
In order to define the trace map most simply, we would like to “ignore the

morphisms” in the definition of the K-theory of E ; that is, we want to work
not with the nerve of the category of weak equivalences of filtered ENRs,
but with the simplicial set of filtered ENRs. We can do this if we introduce
another simplicial direction and consider ENRs parametrized by a simplex.

Let B be a compact space. Recall that a space E→ B over B is an
“ENR over B”, denoted ENRB , if there is an embedding φ:E→B ×R

n,
for some n, and a neighborhood retraction r :U→φ(E) such that both φ

and r commute with the obvious maps to B.

DEFINITION 2.2 ([11]). We define the simplicial category E . of parame-
terized pointed ENRs. The objects Ek in degree k are compact spaces E
that are ENR�k and have a section s :�k→E of the projection E→�k.
The morphisms are maps over and under �k. The face and degeneracy
maps are given by restriction and pullback.

(Similarly, for any B, we have the category EB of parameterized pointed
ENRs over B. For the remainder of the paper, all maps of spaces over B,
for any B, will be maps over B.) The inclusion as the zero simplices E→E .
induces a map in K-theory

�|N.wS.E |→�|N.wS.E .|.
We denote by s.E . the (bi)simplicial set of objects of the category S.E . of

filtered parametrized pointed ENRs. We refer to s.E . simply as the simplicial
set of filtered ENRs. We now note that we can dispense with the morphisms.

PROPOSITION 2.3 ([11], §4). The inclusion as the zero-simplices of the
nerve s.E .→N.wS.E . induces a homotopy equivalence on realization.
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We end this subsection by recalling a few properties of ENRBs. The first
proposition explains the main reason we work with compact ENRBs.

PROPOSITION 2.4 ([7]). If E
π→B is an ENRB with E compact, then π is

a (Hurewicz) fibration.

The next proposition helpfully formulates the main extension property of
ENRs. It is an immediate consequence of the Tietze extension theorem.

PROPOSITION 2.5 ([11], §3). Let Y be a closed subspace of a normal space
X over B and E any ENRB . Any map Y→E over B extends over B to a
neighborhood of Y in X.

COROLLARY 2.6 ([11], §3). Let E ⊂ C ⊂ G be such that E and G are
ENRB and C is a closed subset of G. Any retraction C→E extends to a
retraction of a neighborhood of E in G.

This proposition implies another, using the fact that any two extensions are
homotopic.

PROPOSITION 2.7 ([11], §3). Let E⊂G be such that E and G are ENRB ,
with E closed in G. Then E is a neighborhood deformation retract over B
in G.

COROLLARY 2.8. Let E⊂G be an inclusion of ENRBs with E closed in G.
Then E⊂G is a cofibration, that is satisfies the homotopy extension property.

The corollary follows because, given a neighborhood deformation retrac-
tion of E in G, one can construct a retraction G× I→E× I ∪G×{0}.

2.2. THE FIXED-POINT TRACE MAP

As mentioned above, there is a simplicial set F . of “fixed point problems”
admitting a map, via a Pontryagin–Thom construction, to Q.(S0).

DEFINITION 2.9. The simplicial set F . of fixed point problems has as its
set of k-simplices Fk triples (E,F,f ) where E is a (not necessarily com-
pact) ENRk, F is a compact subset of E, and f is the germ at F of a
map E→E whose fixed points are precisely F . That is, more precisely, f
is a map U→E for some neighborhood U of F with fixed points F , and
we introduce the equivalence relation that f ∼g if f and g agree on some
neighborhood of F .
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There is a simplicial map E .→F . taking an ENR E to the fixed point
problem of the identity (E,E, idE). Morally, this induces an unreduced
version of the trace map. Properly, the trace has as its domain K-theory, or
filtered ENRs – we will construct a reduced trace map from filtered ENRs
to “filtered fixed point problems”. The natural notion of a filtered fixed
point problem is a splitting of the fixed points of a self map into disjoint
components.

DEFINITION 2.10. We define the simplicial set t.F . of filtered fixed point
problems. An element of tkFn is an element (E,F,f ) of Fn together with a
splitting into disjoint pieces F =∐k

i=1 Fi where we allow the Fi to be empty.
The face and degeneracy maps are as expected, with

∂0:
k
∐

i=1

Fi �→
k
∐

i=2

Fi,

∂k:
k
∐

i=1

Fi �→
k−1
∐

i=1

Fi,and

∂j :
k
∐

i=1

Fi �→
(

j−1
∐

i=1

Fi

)

� (Fj ∪Fj+1)�
⎛

⎝

k
∐

i=j+2

Fi

⎞

⎠, for 0<j <k.

The fixed points of the identity map of a filtered ENR are not split
into disjoint pieces, but the identity map is always homotopic to a map
with fixed points split in a manner compatible with the filtration. More-
over, the choice of such a homotopy is contractible. We now make precise
this enlargement of s.E . to the simplicial set ˜s.E . of filtered ENRs with fil-
tering homotopy.

Recall that an element E of skEn is given by a functor (satisfying various
properties) from Ar[k]= [k][1] to En= E�n . In particular the images of the
arrows 0→ i determine a sequence E00⊂· · ·⊂E0i ⊂· · ·⊂E0k. For simplic-
ity, we do not distinguish between the functor E and the filtered sequence
{E0i}, which we denote {Ei}. We think of the Eij , i > 0, as determined by
taking quotients.

DEFINITION 2.11. We call a homotopy h:Ek × I→Ek a filtering homo-
topy for E ∈ skEn if:

1. h preserves the filtration, i.e. h(Ei× I )⊂Ei for all i,
2. h is a homotopy from the identity, i.e. h|(Ek×{0}) is the identity,
3. h is a homotopy to a map contracting a neighborhood of each level of

the filtration, i.e. for all i there exists a neighborhood Ui of Ei in Ek
such that h(Ui×{1})⊂Ei , and

4. h fixes E0, i.e. h|(E0×{t})= idE0 for all t ∈ I .



TRACE AND TRANSFER MAPS 69

(One may equally well define a filtering homotopy for a filtration of any
ENRB ; that is, nothing in the definition depends on having ENR�n .)

DEFINITION 2.12. The simplicial set ˜s.E . of filtered parameterized ENRs
with filtering homotopy is, in degree (k, n), equal to the set of pairs of
elements (E,h) of a filtered ENR E ∈ skEn and a filtering homotopy h

for E.

PROPOSITION 2.13. The forgetful map ˜s.E .→ s.E . induces a homotopy
equivalence on realization.

Proof. We prove that for all k the map ˜skE .→ skE . induces a homotopy
equivalence on realization. The result follows because the realization of a
simplicial map of simplicial spaces is a homotopy equivalence provided the
map is a homotopy equivalence in each simplicial dimension.

The simplicial sets ˜skE . and skE . are both Kan. We show that the rela-
tive simplicial homotopy group vanishes. Let E=E�= (E0

�⊂ · · ·⊂Ek�) be
an element of skEn. (We now write the degree of the filtration as a super-
script for notational convenience.) Denote by E∂ the restriction of E to
∂�. Let h∂ be a filtering homotopy for E∂ . We will construct an extension
of h∂ to a filtering homotopy over all of �.

Proceed by induction on the filtration. By property 4 of a filtering ho-
motopy, we may define h on E0

�×I to be the identity. Suppose h is defined
on Ei�× I , satisfying all the properties of a filtering homotopy for Ei�. We
must construct a map h:Ei+1

� × I→Ei+1
� such that

a. h|(Ei�× I ) agrees with h,

b. h|(Ei+1
∂ × I ) agrees with h∂ ,

c. h|(Ei+1
� ×{0}) is the identity, and

d. h|(Ei+1
� ×{1}) contracts a neighborhood of Ei� into itself.

We begin by ensuring condition (d). By assumption, there is a neighbor-
hood Ui

∂ of Ei∂ in Ei+1
∂ such that hi+1

∂ ×{1} contracts Ui
∂ into Ei∂ . Choose

a closed subneighborhood Ni
∂ ⊂Ui

∂ of Ei∂ . We have a map

hi�×{1} ∪ hi+1
∂ ×{1}:Ei�∪Ni

∂→Ei�

which by Proposition 2.5 extends to a map Ni
�→ Ei� where Ni

� is a
(closed) neighborhood of Ei� in Ei+1

� . (We have used here and will in the
following use without note that all the ‘E’s are compact Hausdorff spaces
and are therefore normal; similarly, using normality, we freely take closed
subneighborhoods of existing open neighborhoods. Also, we use ‘extends’
loosely in that we mean only that the new map agrees with the old wher-
ever both are defined.)
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Next we extend in a fashion determined by condition (a). Gluing
together the existing maps, we have a map

Ei�× I ∪ Ei+1
� ×{0} ∪ Ei+1

∂ × I ∪ Ni
�×{1}→Ei+1

� .

By Proposition 2.5 this extends to a map Ni
� × I → Ei+1

� for some new
neighborhood Ni

� of Ei�.
Finally, we extend over the remainder of Ei+1

� ×I respecting (b) and (c).
Recall the homotopy extension-lifting property: given a cofibration A→X

and a fibration E→B, a homotopy X× I→B with an existing lift A× I
→E over A, and a compatible initial lift X× {0}→E of X, there exists
a lift X× I→E making all relevant diagrams commute. (See, for exam-
ple, [10] and [6].) Here we have A=Ei+1

∂ ∪Ni
�, X=Ei+1

� , E =Ei+1
� , and

B=�. We may assume that Ni
� is itself ENRB and then use 2.8 to see that

Ei+1
∂ ∪Ni

�→Ei+1
� is a cofibration. The resulting homotopy h is a filtering

homotopy for E� agreeing with the given homotopy on E∂ . This completes
the proof.

We can now define the trace map from a filtered ENR with filtering ho-
motopy to a filtered fixed point problem. A typical element of ˜skEn is a pair
(E,h), where E={E0⊂· · ·⊂Ek} is a k+1-stage filtered ENR�n and h:E×I
→E is a homotopy, satisfying various conditions. The fixed point set of
h1:E×{1}→E is split into k+1 disjoint pieces F0,F1, . . . , Fk, with Fi⊂Ei .
By assumption F0=�n=E0. The map is given by

˜skEn
τ→ tkFn

(E,h) �→ (Ek,F1�F2� . . .�Fk, h1).

That we disregard the fixed points F0 corresponds to the fact that we are
defining a reduced trace map.

Next we check that adding the filtration to the fixed point problems did
not affect the homotopy type. Note that we can identify the fixed point
problems F . with t1F ., the one-stage filtered fixed point problems.

PROPOSITION 2.14. The inclusion of F . as the 1-simplices of t.F . induces
a homotopy equivalence |F .| ∼→�|t.F .|.

Proof. Proposition 1.5 of [12] shows that |F .|→�|t.F .| is a homotopy
equivalence if:

1. |t0F .| is contractible;
2. the map |tkF .| ξ→|t1F .| × · · · × |t1F .| (k copies) is a homotopy equiva-

lence, where ξ is induced by the k face maps {0,1}→ {0, . . . , k} of the
form 0 �→ i,1 �→ i+1; and
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3. the components π0(|t1F .|) form a group with composition given by

|t1F .|× |t1F .| ∼←|t2F .| µ→|t1F .|,

where µ is induced by the face map 0 �→0,1 �→2.

(We are using the fact that the realization of a simplicial set has a numer-
able covering by contractible sets.)

1. Note that t0Fn is the set of ENR�n . These elements need not be com-
pact and can be empty. Given any E∂

p→ ∂�n in ENR∂�n , construct an E′

in ENR�n with E′∂ =E∂ as follows. Identify �n with �n∪ (∂�n× I ), where
the boundary of �n is identified with ∂�n×{1}. Let E′ be E× [0,1) with

projection E× [0,1)
p′→�n∪ (∂�n× I ) by p′(e, t)= (p(e), t)∈ ∂�n× I . E′ is

ENR�n as desired.
2. The map

|tkF .| ξ→|t1F .|× · · ·× |t1F .|
(E,F1� . . .�Fk, f ) �→ (E,F1, f )×· · ·× (E,Fk, f )

has a homotopy inverse

|t1F .|× · · ·× |t1F .| ζ→|tkF .|
(E1,F1, f1)×· · ·× (Ek,Fk, fk) �→ (E1� . . .�Ek,F1� . . .�Fk, f1� . . .�fk).

The composition ξ ◦ ζ is given by

(E1,F1, f1)×· · ·× (Ek,Fk, fk) �→
(E1� . . .�Ek,F1, f1� . . .�fk)×· · ·× (E1� . . .�Ek,Fk, f1� . . .�fk).

Using the construction from item 1 above to get rid of ENR components
with no fixed points, this map is homotopic to the identity.

On the other hand, the composition ζ ◦ ξ is given by

α= (E,F1� . . .�Fk, f ) �→ (E� . . .�E,F1� . . .�Fk, f � . . .�f )= ζ ◦ ξ(α).

We will construct, in a canonical fashion, an element of tkF�n×I cobound-
ing α and ζ ◦ ξ(α), thereby showing ζ ◦ ξ is homotopic to the identity
in |tkF .|. When we have an element of tkF�n×I cobounding two elements
β,β ′ of tkFn, we will say loosely that β and β ′ are homotopic, writing
β∼β ′.

Consider E� . . .�E as contained in E×R with the ith copy of E iden-
tified with E× {i}. We have a chain of homotopies of filtered fixed point
problems
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(E×{1}� . . .�E×{k},F1×{1}� . . .�Fk×{k}, f ×{1}� . . .�f ×{k})



(E× (1− ε,1+ ε)� . . .�E× (k− ε, k+ ε),F1×{1}� . . .�Fk×{k}, f ′)



(E× (1− ε, k+ ε),F1×{1}� . . .�Fk×{k}, f ′)



(E× (1− ε, k+ ε),F1×{1}�F2×{1}� . . .�Fk×{1}, f ′′)



(E×{1},F1×{1}� . . .�Fk×{1}, f ×{1})

where, in the above, f ′(e, t)= (f (e), i) on E× (i − ε, i + ε) and f ′′(e, t)=
(f (e),1) in a neighborhood of E×{1}. The last filtered fixed point prob-
lem is simply α, as needed.

3. To show that the components of |F .| form a group, we construct an
explicit homotopy inverse. Let (E,F,f ) be in Fn. Then

(E,F,f )∼ (E× (−1,1),F ×{0}, fr)
where

fr(e, t)= (f (e), φ(t)) with φ(t)> t for t <0

and φ(t)< t for t >0.

The homotopy inverse will be

(E× (2,4),F ×{3}, fq)
where

fq(e, t)= (f (e), φ′(t)) with φ′(t)< t for t <3

and φ′(t)> t for t >3.

Now

(E× ((−1,1)∪ (2,4)),F × ({1}∪ {3}), fr ∪fq)
∼ (E× (−1,4),F × ({1}∪ {3}), fp)

where

fp(e, t)= (f (e),ψ(t)) with ψ(t)> t for t <0,

ψ(t)< t for 0<t <3,

and ψ(t)> t for t >3.

Finally, this is homotopic to a object with no fixed points, which is 0 in
homotopy.
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2.3. STABLE HOMOTOPY VIA FIXED POINT PROBLEMS

We now construct a chain of maps between the simplicial set of fixed point
problems F . and the simplicial set of singular simplices of Q(S0).

The first step is to enlarge the fixed point problems F . to include a par-
ticular embedding in some R

n.

DEFINITION 2.15. The simplicial set F .n has as its k-simplices quadru-
ples (E,F,φ, f ) where (E,F,f ) is in Fk and φ: E → �k × R

n is an
embedding. The suspension map F .n→F .n+1

is given by (E,F,φ, f ) �→
(E,F,φ×{0}, f ), and the simplicial set of embedded fixed point problems
F . is the colimit over n of F .n.

PROPOSITION 2.16. The forgetful map F .→F . induces a homotopy equiv-
alence on realization.

Proof. The simplicial sets are both Kan. We show that the relative sim-
plicial homotopy group vanishes. Let (E,F,f ) be in Fk and let φ:E∂�k→
∂�k×R

n be an embedding. We extend this to an embedding of E�k . First
extend (Proposition 2.5) φ to any map φ′:EU→U×R

n where U is a neigh-
borhood of ∂�k in �k. Let ψ:E�k→�k×R

m be any embedding. Choose a
function γ :�k→ [0,1] that is 0 precisely on ∂�k and is 1 outside U . Now
((1−γ )φ+γψ):E�k→�k×R

n+m is an embedding extending φ, as desired.

Now we further enlarge the fixed point problems to include a retraction
of a neighborhood of their embedding in Euclidean space.

DEFINITION 2.17. The simplicial set ˜F .n has as its k-simplices quintuples
(E,F,φ, f, r) where (E,F,φ, f ) is in F .n and r is the germ of a retraction
onto φ(E) of a neighborhood of φ(E) in �k ×R

n. The suspension map
˜F .n→˜F .n+1

is given by (E,F,φ, f, r) �→ (E,F,φ×{0}, f, r ×{0}), and the
simplicial set of embedded fixed point problems with retraction ˜F . is the
colimit over n of ˜F .n.

PROPOSITION 2.18. The forgetful map ˜F .→F . induces a homotopy equiv-
alence on realization.

Proof. The simplicial sets are both Kan. We show that the relative sim-
plicial homotopy group vanishes. Let (E,F,φ, f ) be in Fk and let r be the
germ of a neighborhood retraction of φ(E∂�k)⊂∂�k×R

n. By Corollary 2.6
this neighborhood retraction extends to some neighborhood retraction of
φ(E)⊂�k×R

n, as desired.
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We now dispense with the ENR E and retain only the fixed points and
the germ of a self map.

DEFINITION 2.19. The simplicial set of Euclidean fixed point problems
F .R is the colimit over n of those fixed point problems of the form
(�k×R

n, F, f ). Suspension, again, is given by (�k×R
n,F, f ) �→ (�k×R

n+1,

F ×{0}, f ×{0}).

There is a map ˜F .→F .R taking (E,F,φ, f, r) to (�k×R
n, φ(F ), f r).

Next we form the collapse map of the germ at the fixed point set, pro-
ducing a germ at the vanishing set.

DEFINITION 2.20. The simplicial set V.n has as k-simplices triples
(�k×R

n, V , g) where g is the germ at V ⊂�k ×R
n of a map to R

n that
sends V to 0 ∈R

n. The suspension V.n→ V.n+1 takes (�k ×R
n,V , g) to

(�k×R
n+1, V ×{0}, g× idR). The simplicial set of vanishing problems V.

is the colimit over n of V.n.

The collapse map is given by

F .R ν→V.
(�k×R

n,F, f ) �→ (�k×R
n,F, idRn−f ).

Finally, let Q.(S0) denote the singular set of Q(S0). That is, Qk(S
0) is a

colimit of simplicial sets with elements given by maps �k × Sn→ Sn such
that for all p ∈�k the map {p} × Sn→ Sn is based; we also sometimes
consider these elements as maps �k × Sn→�k × Sn over �k. We identify
Sn with R

n ∪∞ and take infinity to be the basepoint. There is a map
Q.(S0)→V. given by (�k × Sn φ→ Sn) �→ (�k ×R

n, φ−1(0), [φ]), where [φ] is
the germ of φ at φ−1(0).

PROPOSITION 2.21. The restriction-germ map Q.(S0) → V. induces a
homotopy equivalence on realization.

Proof. Again, both simplicial sets are Kan and we show that the rela-
tive simplicial homotopy groups vanish. Let (�k ×R

n,V , g) represent an
element in Vk. Let U denote the neighborhood of V ⊂�k ×R

n on which
g is defined. Let g̃∂ be a lift to Q.(S0) of g over ∂�k. That is, g̃∂ is a map
from ∂�k×Sn to ∂�k×Sn that agrees with g on U∂ .

We have therefore a partial map h : �k × Sn → �k × Sn defined on
∂�k×Sn∪U ∪�k×{∞} agreeing with g̃∂ and g. Using standard extension
theorems we can construct a partial map h′:�k×Sn→�k×Sn defined on a
neighborhood of ∂�k×Sn∪V ∪�k×{∞} such that h′ agrees with h where
both are defined.



TRACE AND TRANSFER MAPS 75

Denote the projections by π :�k×R
n→�k and ρ:�k×R

n→R
n. Given

a function ε:�k→R
+ ∪{∞} that sends ∂�k to {∞}, let

Pε={x ∈�k×R
n s.t. |ρ(x)|<ε(π(x))}.

This Pε is a neighborhood of � × {0}. There exists such a function ε

so that the map h′ : h′−1(Pε)→ Pε is proper. Choose a homeomorphism
α:Pε→�k×R

n that is the identity in a neighborhood of �×{0}∪ ∂�k×R
n.

Now define

h′′:�k×Sn→�k×Sn by h′′(x)=
{

αh′(x) if x ∈h′−1(Pε)

∞ otherwise.

Here we again identify Sn with Rn∪∞. Note that h′′ agrees with g̃∂ on ∂�k

and with g on some neighborhood of V , as desired.

3. The Becker–Gottlieb Transfer and Commutativity

We recall the Becker–Gottlieb transfer |B.| β→ |Q.(S0)| from [1–3], define

certain intermediate maps |B.| θb→ �|s.E .| and |B.| βf→ |F .|, and compare
the composition of the A-theory transfer and the A-theory trace with the
Becker–Gottlieb transfer.

For a fibration E→ B with ENRB total space and compact fibers,
we define the Becker–Gottlieb transfer B → Q(S0) as follows. (Though
the transfer typically has range Q(E+), we refer also to the composite
B→Q(E+)→Q(S0) as the Becker–Gottlieb transfer.) Let φ :E→B ×R

n

be an embedding, and let r :U→ φ(E) be a neighborhood retraction of
φ(E) ⊂ B × R

n. Again denote the projections by π : B × R
n → B and

ρ:B×R
n→R

n. Given a function ε:B→R
+, let

Vε={x ∈U s.t. |ρ(x)−ρ(r(x))|<ε(π(x))}.
Choose such a function ε so that the map

Vε→Dn

x �→ (ρ(x)−ρ(r(x)))/ε(π(x))
is proper, where Dn is the open unit ball in R

n. We now have maps

B×R
n open←−−Vε proper−−→Dn∼=R

n

with the left map an open embedding and the right map proper. After one-
point compactification we have a map B+ ∧ Sn→ Sn and in particular a
map B→Q(S0). This is the Becker–Gottlieb transfer. It depends on the



76 CHRISTOPHER L. DOUGLAS

choices of φ, r, and ε but only up to homotopy. Doing the same construc-

tion simplex by simplex clearly gives a simplicial map B.
β→Q.(S0).

There is a map B.
βf→F . taking a simplex σ ∈Bk to (Eσ ,Eσ , id)∈Fk. The

choice of an embedding φ and a neighborhood retraction r determine a
map B.→˜F . by σ �→ (Eσ ,Eσ ,φ, id, [r]), where [r] is the germ of the retrac-
tion. The diagram

F .

B.

βf
��""""""""

���
��

��
��

� F.

��

˜F .

��

clearly commutes. Similarly the diagram

˜F .

��
B.

�����������

β



#
##

##
##

##
##

##
##

F .R

��
V.

Q.(S0)

��

clearly commutes when we make the same choice of φ and r for the two
diagonal maps. Thus for any choice of φ, r, and ε and any choice of
homotopy inverses to the wrong way maps above, the diagram

|B.| βf ��

β ���
��

��
��

��
|F .|

��
|Q.(S0)|

commutes up to homotopy.
We have another map |B.| θb→ �|s.E .| induced by the simplicial map

B.→ s1E . taking σ ∈Bk to (�k ⊂�k �Eσ)∈ s1Ek. Moreover, this map lifts
canonically to a map B.→˜s1E . taking σ to (�k⊂�k�Eσ , id× I ). That is,
because �k�Eσ is a disjoint union, the identity map is a filtering homo-
topy. Now the diagram
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˜s1E .
τ

��
B.

��								

βf ��$
$$

$$
$$

$ t1F .

F .

��

clearly commutes. Thus for any choice of homotopy inverses the diagram

|B.| θb ��

βf ���
��

��
��

��
�|s.E .|

��
|F .|

commutes up to homotopy.
We now examine the commutativity of the top rectangular section of Dia-

gram 4. First we define simplicial replacements for the two homotopy colim-
its. Let ho..(B) denote a (bi)simplicial set whose elements in degree (k, l)
are pairs (s, t) where s is a k-diagram in simp(B.) and t is an l-diagram in
(simp(B.)/s0); that is, an element of ho(k,l)(B) is a (k+ l)-diagram in simp(B.)
of the form

tl→·· ·→ t0� s0→·· ·→ sk.

(The squiggled arrow distinguishes the end of the l-diagram from the begin-
ning of the k-diagram.) The realization of ho..(B) is hocolim

x∈simp(B.)
|N.(simp(B.)/x)|.

Similarly let ho..A(B) denote a simplicial set with elements in degree (k, l)
given by pairs (s, T ) where s is a k-diagram in simp(B.) and T is an
l-diagram of weak equivalences in Rhf (Es0). The realization of ho..A(B) is
hocolim
x∈simp(B.)

|N.wRhf (Ex)|. In terms of the simplicial replacements, the maps in

Diagram 4 are given as follows:

ho..(B)→N. simp(B.)

(tl→·· ·→ t0� s0→·· ·→ sk) �→ (s0→·· ·→ sk)

ho..(B)→ho..A(B)

(tl→·· ·→ t0� s0→·· ·→ sk) �→ (s0→·· ·→ sk,Etl→·· ·→Et0)

ho..A(B)→N.wRhf (E)

(s0→·· ·→ sk,Etl→·· ·→Et0) �→ (E�Etl→·· ·→E�Et0)
Also recall Kan’s last vertex map N. simp(B.)→ (B.); this map is given by

(s0→ s1→·· ·→ sk) �→ (m(s0)m(s1) . . .m(sk))
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where m(S) denotes the maximum vertex of S in the vertex ordering of
(B.) and (v0 v1 . . . vk) denotes the simplex with vi as vertices. This differs
only in notation from the description given in Section 1.

We now construct a homotopy inverse to the composition

|ho..(B)| ∼→|N. simp(B.)| ∼→|B.|
Note that neither of the maps in this composition has a simplicial ho-
motopy inverse. (For example, N. simp(B.) is the barycentric subdivision
of (B.) and there is no sensible simplicial map from a simplicial set to
its barycentric subdivision.) For simplicity, we assume that (B.) is finite
dimensional, that is, that there exists a number N such that there are no
nondegenerate simplices of (B.) of dimension greater than N . When (B.)

is not finite dimensional our discussion applies to the finite skeleta of (B.);
we assume implicitly only that the map |B.| λ→|ho..(B)| that we construct
on a finite dimensional skeleton can be extended to a homotopy inverse on
all of (B.). Let s= (01 . . . n) be a simplex in (Bn) with vertices labeled, in
order, 0,1, . . . , n. Let α= (α0, α1, . . . , αn) be a point in the standard sim-
plex �n; that is, αi ∈ [0,1] and

∑

αi =1. Thus (s, α) labels a point in |B.|.
The order in [0,1] of the n+ 2 numbers (1/(N +2), α0, α1, . . . , αn) deter-
mines a subdivision of �n. The segments of this subdivision have the form

�={α s.t. αi0 > · · ·>αik >1/(N +2)>αik+1 > · · ·>αin}
φ∼=�k×�n−k

where (i0, . . . , in) is a fixed permutation of (0, . . . , n), and φ is a homeo-
morphism that rescales the indicated segment of �n onto the standard
product �k ×�n−k. (We assume that φ interpolates linearly between the
obvious correspondence of vertices.) Given such an α, we now define the
homotopy inverse by

|B.| λ→|ho..(B)|
(s, α) �→ (((i0)→ (i0i1)→·· ·→ (i0 . . . ik)�

(i0 . . . ik)→ (i0 . . . ik+1)→·· ·→ (i0 . . . in)), φ(α)).

Here again a collection (i0 . . . il) denotes the simplex of (Bl) with vertex set
{i0, . . . , il}; we allow repetitions in the vertex set, and so the simplex may
be degenerate.

Perhaps a picture is in order. The subdivision of �2 appears as in
Figure 1. The segment labeled (∗) is mapped to (0→ 01→ 012� 012)
in ho(0,2)(B), while the segment (∗∗) is mapped to (2→12�12→012) in
ho(1,1)(B). (As the vertex set is ordered, the simplex 12 is equivalent to 21,
and 012 to 210.)

We now have two maps θ t , θb: |B.|→�|N.wS.E .| given by going around
the top and bottom respectively of the rectangle of Diagram 4. (Here we
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Fig. 1. A subdivision of the 2-simplex.

do not distinguish between the map θb: |B.|→�|s.E .| and the composition
θb : |B.|→�|s.E .|→�|N.wS.E .|.) We think of both θ t and θb as maps to
|N.wS1E .| and write them as such. Take s= (01 . . . n) and α∈�n as above.
The maps are given by

θ t (s, α)= ((∗⊂∗�Ei0)→·· ·→ (∗⊂∗�Ei0i1...ik ), π(φ(α)))
θb(s, α)= ((�n⊂�n�E01...n), α)

Here π :�k×�n→�k denotes projection. Notice that the image of θ t is in
NkwS1E0, while the image of θb is in N0wS1En.

We will define a homotopy between these two maps, but first we need a
preliminary construction. Suppose (S0, S1, . . . , Sl) is a series of sets of ver-
tices of (B.); we allow repetition both within and between the Si . As usual,
E(Si) denotes the segment of the fibration E→B over the simplex (Si); this
space is ENR�|Si | and we imagine it as such even if (Si) is degenerate. We
now construct an ENR�l which we will denote

ES0−−ES1−−· · ·−−ESl .
This ENR�l has vertices ES0,ES1, . . . ,ESl ; that is, these are the inverse
images of the vertices of �l. The ENR�l is given by the composition

ES0�...�Sl→�|S0|+···+|Sl | µ→�l

where µ takes a vertex p to the vertex i if p corresponds to an element in
Si . Though it is somewhat surprising, this is an ENR�l .

Now recall that θ t took a point

(01 . . . n, α)∈�={αi0 > · · ·>αik >1/(N +2)>αik+1 > · · ·>αin}
to a point in

(∗⊂∗�Ei0)→ (∗⊂∗�Ei0i1)→·· ·→ (∗⊂∗�Ei0i1···ik ),
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which for simplicity we will now abbreviate to

Ei0→Ei0i1→·· ·→Ei0i1...ik .

(All constructions from now on are understood to apply also to the ‘∗⊂∗’
segment of the ENR; similar abbreviation will be applied to ‘ENR�l ’s for
any l.) Consider the element E∈NkwS1Ek given by

Ei0

��

Em(i0i1)

��

Em(i0i1i2)

��

. . . Em(i0i1i2...ik)

��
Ei0i1

��

Ei0i1

��

Ei0i1∪m(i0i1i2)

��

. . . Ei0i1∪m(i0i1i2...ik)

��
Ei0i1i2

��

Ei0i1i2

��

Ei0i1i2

��

. . . Ei0i1i2∪m(i0i1i2...ik)

��
...

��

...

��

...

��

. . .
...

��
Ei0i1i2...ik Ei0i1i2...ik Ei0i1i2...ik . . . Ei0i1i2...ik

In the realization this element is a �k×�k. Consider the two faces

E1=Ei0→Ei0i1→·· ·→Ei0i1...ik

and E2=Em(i0)−−Em(i0i1)−−· · ·−−Em(i0i1···ik).

These elements E1 ∈ NkwS1E0 and E2 ∈ N0wS1Ek determine respectively
maps E1,E2:�k→|NkwS1Ek|. Furthermore, the element E determines a
linear homotopy between E1 and E2.

Notice that by definition the diagram

�

φ

��

� � �� �n θt �� |N.wS1E .|

�k×�n−k π �� �k

E1

��

commutes. Informally, the map θ t restricted to � “just is” E1, pointwise in
�n−k. The homotopies determined by the E (for various �) fit together to
give a homotopy

�n× I E→|N.wS1E .|
from θ t to a map

�n
(s)

E2→|N.wS1E .|
(s, α) �→ (Em(i0)−−· · ·−−Em(i0...ik), π(φ(α))).
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The simplex (Em(i0) −−· · · −−Em(i0...ik)) is a possibly degenerate subface of
(E0−−· · ·−−En)=E0...n. There is therefore an obvious linear homotopy
between E2 and θb. The composition of this homotopy with E gives a ho-
motopy between θ t |�n

(s) and θb|�n
(s). The homotopies so constructed for

two simplices s and t of (B.) agree on the intersection s∩ t . We have thus
defined a homotopy between θ t and θb, as desired.

To summarize, we have shown that the diagram

A(∗)

��
B

�����������
�� �|s.E .|

is homotopy commutative on finite skeleta of B = |B.|, and is therefore
weakly homotopy commutative. This completes the proof of the following.

THEOREM 3.1. Let E→B be a fibration with compact fibers. Assume the
total space E is a Euclidean neighborhood retract over B; (this is always true,
for example, if the fibration is locally trivial and the fiber is a finite CW com-
plex, or if both E and B are finite CW complexes). Then the composition of
the A-theory transfer with the trace map to stable homotopy is weakly homo-
topic to the Becker–Gottlieb transfer. That is, the diagram

A(∗)

��
B

��%%%%%%%%%
�� Q(S0)

commutes up to weak homotopy.
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