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Abstract

In this note we give a new proof of the fibrewise Poincare-Hopf theorem using
Dold’s euclidean-neighborhood-retract (ENR) description of the Becker-Gottlieb
transfer. The fibrewise Poincare-Hopf theorem states that the transfer map for a
bundle £ — B with smooth manifold fibres factors through the transfer for the
subbundle of zeros of a vertically-generic vertical vector field on the total space F.
The ENR approach suggests certain generalizations of the theorem; we describe
in particular a result expressing the transfer for the bundle £ — B in terms of
the transfer for the subbundle of zeros of the gradient of a fibrewise Morse-Bott
function on the total space E. We illustrate the results with a discussion of the
transfer for orthogonal sphere bundles over spheres.

Introduction

The classical Poincare-Hopf theorem asserts that the euler characteristic of a manifold
M is the sum of the indices of the zeros of a generic vector field on M. The fibrewise
Poincare-Hopf theorem correspondingly asserts that the fibrewise euler characteristic of
a bundle £ — B can be computed in terms of the indices of the zeros of an appropriately
generic vertical vector field on the total space E.

The euler characteristic of a finite CW complex F' is equal to the degree of a certain
self-map of a sphere ¢(F): S™ — S™. This map depends naturally on F', in the sense
that given a fibre bundle £ — B, the maps ¢(E,), b € B, associated to various fibres
assemble to give a map B — "S". This fibrewise euler characteristic is of course better
known as the Becker-Gottlieb transfer |2]; its formulation as a fibrewise self-map of a
sphere is due to Dold [5, 6].

The purpose of this note is to give a simple and transparent proof of the fibrewise
Poincare-Hopf theorem for any vertically-generic vertical vector field on a smooth bundle
of smooth manifolds. Though the main interest is our method of proof, this result does
generalize a theorem of Brumfiel and Madsen [4, 7[; in [4] and [7] it was assumed that
the bundle was associated to a principle G-bundle for a compact Lie group G and that
the vector field on the total space was associated to a G-invariant vector field on the
fibre. Our approach, using Dold’s euclidean-neighborhood-retract (ENR) philosophy,
easily extends to almost any situation in which there is a natural definition of the index
of the vertical vector field. For example, we note that the fibrewise Poincare-Hopf



theorem holds under the much weaker assumption that the vector field is the gradient
of a fibrewise Morse-Bott function. Such a vector field is usually degenerate, and its
zeros can define a subbundle of any dimension. This result can be used to decompose
the transfer in terms of the indices of a series of increasingly degenerate vector fields,
thereby easing computation. The ENR approach even allows us to identify the transfers
of bundles with CW, not necessarily manifold, fibres in terms of subbundle transfers,
but we will not discuss this case explicitly.

In section 1 we use euclidean neighborhood retractions to associate to a space F
a self-map of a sphere whose degree is the euler characteristic of F'. We observe that
this degree is invariant under deformations of the retraction; this invariance is the key
ingredient in the proofs of the main theorems. Section 2 illustrates the techniques of
section 1 by proving the classical Poincare-Hopf theorem. In section 3, we use fibrewise
neighborhood retractions to introduce the Becker-Gottlieb transfer as a fibrewise self-
map of a sphere, and we discuss vertical deformations of the retractions. Section 4 proves
the fibrewise Poincare-Hopf theorem, describes its generalization to Morse-Bott vector
fields, and discusses, by way of illustration, the transfer for orthogonal sphere bundles
over spheres.

This note is expository in flavor and can be considered a rearticulation and applica-
tion of ideas of Dold, among others. The reader who is interested only in the statements
of results should look to section 4.

1 The Euler Characteristic

We want to associate to a space F' a map ¢(F): S® — S™ for some n such that the
degree of ¢(F') is the euler characteristic of F'. If F' is a closed manifold, we can utilize
the Pontryagin-Thom construction as follows. Choose an embedding of F' in R™ and let
vr denote the normal bundle. Notice that because F' is compact, the Thom space of
the normal bundle, Th(vr), is the same as the one-point compactification of the normal
bundle, (vr)". Let 77 denote the tangent bundle of F', and F the union of F' and a
disjoint basepoint. We have the sequence of maps

S"— Th(l/F) = (Z/F)Jr — (Z/F @D 7'F)Jr = (F X RH)JF = F+ AS" — §" (1)

where the first map is the Pontryagin-Thom collapse map, the second is the inclusion,
and the last is projection. If we identify vp with a tubular neighborhood U of F' in
(R™)* = S™, this composite map has the following form. If p ¢ U, then p is mapped
to infinity, that is to the basepoint of S”. If p € U, then p is mapped to the vector
p—7(p) € R" where 7: U = vp — F C R™ is the projection; that is, p is mapped to the
vector to which it corresponds in the embedded normal bundle.



This construction did not depend essentially on F' being a manifold—it required
only the existence of an embedding of F' into some R"” with a neighborhood U of the
image and a retraction U — F'. Dold called such spaces euclidean neighborhood retracts
(ENRs) and studied them and their fibrewise analogs in [5| and [6]. For now we content
ourselves with the observation that any finite CW complex F'is an ENR and we imitate
the construction of sequence 1 in this context. Choose an embedding of F' in some R",
a neighborhood U of F', and a retraction r: U — F'. This neighborhood U may be quite
badly behaved, so we consider a smaller, more uniform neighborhood which resembles a
tubular neighborhood in the case when F' is a manifold. This smaller neighborhood is
Ve={u €U s.t. lu—r(u)| < e}. The picture is as follows:

On the one hand, V, is openly embedded in R”, and on the other hand it maps properly
to D, the n-disc of radius e:

open

R™ Ve

proper

DI >~ Rn
U<~——Ur—>u —r(u)

Recall that one-point compactification is contravariant with respect to open embeddings
and covariant with respect to proper maps, so one-point compactifying this sequence
gives a map ¢(F): S™ — S™. We will also sometimes denote this map ¢(F,r) when we
want to emphasize its dependence on the retraction.

Definition 1.1. The euler characteristic of F' is the degree of ¢(F'), that is x(F) =
deg ¢(F).

Implicit in this definition is the fact that the degree does not depend on the choice of
embedding, neighborhood, retraction, or e. This is easily checked as follows. Fixing the
other choices, varying e certainly does not affect the degree. Now for a fixed embedding
with two different neighborhood retractions (U,r) and (U’,7’), use the fact that the
embedding is a cofibration to produce a retraction 7 of a neighborhood U of F x I
in R™ x I, agreeing with » and 7’ in some neighborhoods of F' x {0} and F' x {1}
respectively. Performing the above one-point compactification construction on (F' X



I,U,7) produces a homotopy between ¢(F,r) and ¢(F,r'). Similarly, if we increase n
sufficiently (which does not affect the degree), any two embeddings are isotopic, and the
one-point compactification construction on the isotopy produces a homotopy as desired.
In section 2 we will further justify this definition by showing that it agrees with more
classical definitions of the euler characteristic.

We now make two key observations about the construction of ¢(F,r). First, the
remarks in the above paragraph show in particular that any two retractions r,7’': U — F
are homotopic when restricted to some neighborhood of F. In fact, given any map
s: U — F homotopic to a retraction r: U — F', the construction, exactly as given,
produces a map ¢(F,s): S" — S", and the degree of ¢(F,s) is equal to the degree
of ¢(F,r), as is easily verified. Second, as removing the origin {0} from (R")* = S"
results in a contractible space, the degree of ¢(F,s) depends only on a neighborhood
of the inverse image of {0}, that is on a neighborhood of the set of fixed points of s,
Fix(s) = {u € U s.t. u— s(u) = 0}. When s is a retraction this fixed set is precisely F,
but in general it may be only a subset of F.

We will utilize these observations primarily as follows. Let f: F' — F be a map
homotopic to the identity on F' such that the fixed point set of f, Fix(f), is a discrete
subset of F'. Then for any retraction r: U — F, the composite fr: U — F'is homotopic
to r and so the degree of ¢(F, fr) is the euler characteristic of F. But this degree
depends only on the behavior of fr in a neighborhood of Fix(fr) = Fix(f) in U, which
is in turn determined up to homotopy by the behavior of f on a neighborhood of Fix(f)
in F'.

2 The Poincare-Hopf Theorem

The euler characteristic is most simply defined for a finite simplicial complex as the
alternating sum of the number of simplices in each dimension. For a manifold, the euler
characteristic may instead be given as the sum of the indices of the vanishing points of a
generic vector field. The (classical) Poincare-Hopf theorem asserts that whenever both
are defined, these quantities agree. We prove this by relating each to x(F') = deg ¢(F)
as defined in the last section.

We begin by recalling the definition of the index of a vanishing point of a vector field.
Let F be a closed manifold and X a generic vector field. (Generic here means transverse
to the zero section as a map F' — TF.) Now if X(p) = 0 € T,F then the derivative
map is dX,: T,F" — T, 0nTF = T,F @& T,F. Composing with one projection to T, F
gives the identity map, and composing with the other gives a map T,F' — T, F' that we
will also denote by d.X,.

Definition 2.1. The index of a generic vector field X on the manifold F', at a point
p where X vanishes, is the degree of the one-point compactification of the derivative



dX,: T,F — T,F. That is, indx(p) = deg(dX,").

Proposition 2.2. Let X be a generic vector field on a closed manifold F' and let Z(X)

denote the set of points where X vanishes. Then x(F) = > indx(p) where x(F) is
pEZ(X)
the degree given in definition 1.1.

Proof. Integrate —X, the negative of the vector field X, to a self-map f: FF — F and
take y(F') to be deg ¢(F, fr) as defined in section 1. Note that we integrate —X, not
X, for the simple reason that ¢(F, fr) is locally idy — fr, so a deformation f along —X
deforms ¢ in the direction of X. The vanishing set or zeros Z = Z(X) of the vector
field are precisely the fixed points of the self-map f. Further, it is clear that the index
of X at a point p is the same as the local degree of ¢(F, fr) at p; (by the local degree
we mean the degree of the restriction of ¢(F, fr) to a small neighborhood of p).

This equivalence between the index of X and the local degree of ¢(F, fr) may be
seen in more detail as follows. Choose the embedding of F' in R"™ so that the image of a
neighborhood of Z is flat in R™; that is, the neighborhood is mapped diffeomorphically
onto a collection of open subsets of affine linear subspaces of R™. Let the retraction
r: U — F of a neighborhood U of F' be given by orthogonal projection to F' in a small
neighborhood of Z. Now deform the vector field X so that it is linear in a similarly
small neighborhood of Z; that is, in this neighborhood, the deformed vector field X
agrees with its derivative dX |z, using the canonical identification of a tangent space to
R™ with R™. Now take f: F' — F to be a unit-time integral of —X, and more generally
ft: F — F to be a time-t integral. Consider the homotopy

Ux]i>]R”

o [ e s
’ (u—ru)+X(ru) ift=0

between u — u — fru and u — u — ru 4+ X (ru). Let V, be the neighborhood of Z x I
given by {(u,t) € U x I s.t. |(u—ru)+ Lf““” < €}. Then for very small ¢, the
map h|‘7;: \Z — D7 is proper. One-point compactification yields the desired homotopy
between ¢(F, fr) and a suspension of the index map.

Roughly, this is just to say that locally at a zero, the derivative dX is homotopic to
the vector field X, which is in turn homotopic to its integration —f. We belabor this

point because it will arise in a fibrewise setting in section 4. O

Next we compare x(F') to the classical alternating sum definition of the euler char-
acteristic.

Proposition 2.3. Let F' be a finite simplicial complez and let |F;| denote the order of
the set of i-simplices of F. Then x(F) = >_(—1)"|F}|.

7



Proof. By induction we construct a self-map f: F — F with fixed point set Fix(f) equal
to the set of barycenters of simplices of F'. The local degree of ¢(F, fr) at the barycenter
of a simplex of dimension ¢ will be (—1)’. (As in the proof of Proposition 2.2, the local
degree of ¢(F, fr) at a point p refers to the degree of the restriction of ¢(F, fr) to the
component of V. containing p, for € sufficiently small.)

For each k-simplex o, fix a homeomorphism h: ¢ — D* of ¢ with the unit disc in
R¥ such that h takes the barycenter of o to the origin. Let f be the identity on the
O-simplices of F' and suppose f has been defined on the (k — 1)-skeleton of F'. Define f
on a k-simplex o to be the composite

h c e Rt
o -DF SDF SDF Lo g

where ¢: D¥ — DF is the cone on hfh=': S¥=! — S*=1 and e: D¥ — DF is a radially
expanding map such as t — (2 — [t])t.

The resulting f: F©' — F maps a point in the interior of a simplex ¢ to a point
further away from the barycenter of ¢. In a neighborhood of the barycenter of o, the
euler characteristic map ¢(F, fr), given by idy — fr, will therefore be a reflection in
1 hyperplanes, where ¢ is the dimension of ¢. Thus the deformation f contributes the
appropriate local degree at the fixed points. O

3 The Becker-Gottlieb Transfer

Let n: F — B be a fibre bundle, b € B a point in the base, and F} the fibre over b.
If we can construct the euler characteristic map ¢(Ep): S™ — S™ of section 1 in a way
that depends continuously on b, then we will have produced a map B — Q"S™. This
map will be well defined up to homotopy after composition with Q"S™ — Q(S°). Recall
the sequence 1 in section 1, in which the map ¢(FE,) factored as S™ — S™ A (Ep)4 — S™
Instead of projecting to S™ we can compose the first map with the inclusion S"A(E,), —
S™ A E;. This produces a refined fibrewise euler characteristic B — Q"(S" A E) —
Q(E;) known as the Becker-Gottlieb transfer for the bundle £ — B.

We suppose for simplicity that B is compact and that the fibre of n: E — B is a finite
CW complex. These conditions can be relaxed to, for example, B paracompact and E
a euclidean neighborhood retract over B; see [5|. We now perform the construction of
section 1 simultaneously on all fibres of 7. Choose an embedding £ — B x R™ and a
neighborhood U of E with a retraction r: U — E commuting with projection to B.
Replace U by a smaller uniform neighborhood V., = {u € U s.t. |7(u) — w(r(u))| < €}
where m: B x R" — R" is projection. This gives the sequence of maps

open proper

B x R™ Ve
u LU (r(u), m(u) — w(r(u)))

ExD! ¥~F xR"®




One-point compactification yields a map x(n) = x(n,r): By AS" — E; AS", whose
adjoint we may compose with the inclusion Q"(S™ A E,) — Q(Fy). The composite
depends on the choices only up to homotopy.

Definition 3.1. The Becker-Gottlieb transfer for the bundle n: E — B is the map
X(n): B — Q(E,) constructed above.

The Becker-Gottlieb transfer is of course due to Becker and Gottlieb, and has had many
formulations since its introduction; in particular this version harkens back to Dold,
though we learned it from Segal.

The key observation, as in section 1, is that the construction does not depend on
r: U — FE being a retraction, so long as it remains a map over B. In particular, let
f: E — E be a vertical deformation of the identity on £ — that is, f is homotopic to
the identity and commutes with projection to B. In this case, the transfers constructed
using : U — FE and fr: U — E are homotopic, that is x(n,r) ~ x(n, fr): B — Q(E.).
Further, as before, the homotopy class of x(n, fr) depends only on the behavior of
fr: U — E in a neighborhood of the fixed points of fr, which in turn is determined by
the behavior of f: F — E in a neighborhood of the fixed points of f.

4 The Fibrewise Poincare-Hopf Theorem

We now relate the Becker-Gottlieb transfer of a fibre bundle n: F — B to the fibrewise
index of an appropriately generic vertical vector field on F.

Suppose the fibre F' of i) is a closed (smooth) manifold, and let X be a vertical vector
field on E that restricts to a generic vector field on every fibre. Note that in general there
are obstructions to the existence of such a vector field. The zero set Z = Z(X) of such an
X is a covering space of B, Z — B, and we define the fibrewise index of X along Z. Let
TE denote the (vertical) tangent bundle of E. As we saw in section 2, the tangent bundle
T(TE) of this bundle, when restricted to the zero section of TE, splits as two copies
of TE. Thus the derivative of X along Z is dX|z: TE|; — T(TE)|; X TE|z; @ TE|,
where Z is the zero section of TE over Z. Composing with one projection gives the
identity, and composing with the other gives a map that we also refer to as the derivative
dX: TE|Z — TE|Z

Definition 4.1. Let X be a vertically generic vector field on the total space of a bundle
E — B as above, with zero set Z. Choose a bundle v over Z complementary to TE|.
The one-point compactification of the map

ZxR"2TE;0v Z8 TR, v~ Z xR

is called the index of X, denoted Ind(X): Z, A S™ — Z, A S™. We also refer to the
stabilized n-fold loop of this map as the index, Ind(X): Q(Z;) — Q(Z4).



Theorem 4.2. Let n: E — B be a fibre bundle over a compact base B with fibre F' a
closed manifold. Let X be a vertical vector field on E restricting to a generic vector field
on each fibre. Denote the zero set of X by Z and the projection by ns: Z — B. The
diagram

B—"%q(E,) (2)
x(ns)i TQ(inC)
Q(Z5) Ind(X) Q(Z4)

commutes up to homotopy. Here x(n) and x(ns) are the transfers for the corresponding
bundles, Ind(X) is the indez, and Q(inc) is the inclusion.

As mentioned in the introduction, this is a slight generalization of the theorem of Brum-
fiel and Madsen [4] as presented in [7]. There it is assumed that 7 is associated to a
principle G-bundle, for a compact Lie group G, namely n: P x5 F' — B, and that the
vector field X is associated to a generic G-invariant vector field on F.

Proof. As in the proof of Proposition 2.2, we integrate —X to a map f: £ — E and
use x(7, fr) as our model of the transfer x(n), where r is any retraction. Already with
this substitution it is clear that the diagram 2 will commute up to homotopy, but we
can make the homotopy more explicit by constructing intermediate maps as shown:

B () (3)

Q(inc)

Ind(X,fr)

Q%) Q(Z4)

Ind(X)

In order to construct these intermediate maps, we need to make various choices of
embeddings and neighborhoods for the bundles n and ng. By making compatible choices,
we ease the proof of commutativity. Embed E in B x R"™ and let M be a neighborhood
of E with retraction r: M — E. The subset Z of FE is thereby embedded in B x R".
Choose a neighborhood N of Z such that N C M, and a retraction s: N — Z. The

diagram is

E— M“——> B x R*

ZC<—S_>N



Next take uniform subneighborhoods

W.={ue N s.t. |r(u) —7(s(u))] < €}
Vo={ue M st. |n(u) —7(fr(u)| <€}

where ¢ < e. The picture is as follows:

given by

4

(s(u), m(u) = 7(s(u)))

Here the maps labeled “0” and “p” are open and proper respectively, the indicated tri-
angles are commutative or homotopy commutative, and the lower left map is a homeo-
morphism. Notice that one-point compactifying the left two maps, taking the adjoint,
and then looping gives x(ns), similarly for the top maps gives x(7, fr), and one-point
compactifying and looping the right map gives Q(inc).

—~
w
—~
<
:_/
A
E
|
3
—~
~
3
—~
<
SN~—
N~—
N~—
e



—_~—

Now using this diagram, define x(n, fr) to be the looped adjointed one-point com-
pactification of the sequence B x R" < Vi — Z x D7,. This is a lift up to homotopy of
x(n, fr) along the inclusion Z x D”, — E x D?. Similarly, define Ind(X, fr) to be the
looped one-point compactification of the sequence Z x D! « V., — Z x D7,. This map
is, so to speak, an integration of Ind(X), in that it enacts on a neighborhood of Z what
dX does on an infinitesimal neighborhood of Z, that is on the tangent bundle at Z.

The (homotopy) commutativity of diagram 4 immediately implies the homotopy
commutativity of the two triangles in diagram 3. It remains only to see that Ind(X, fr)
is homotopic to Ind(X'). This can be achieved as in the proof of Proposition 2.2. That
is, choose an embedding of F in B x R" that is flat in a neighborhood of Z and presume
the retraction is given by orthogonal projection near this region. Deform X to be linear
near Z, and then construct a homotopy, using shorter and shorter integrations f; of —X,
from u — 7(u)—7(fru) to u — m(u)—7(ru)+m(X (ru)). One-point compactification on
a small neighborhood of Z yields the desired homotopy from Ind(X, fr) to Ind(X). O

This result does not depend on the zero set Z(X) being fibrewise discrete. Indeed,
we need only have that Z is a fibre bundle over B and that X is well enough behaved
that we can define a sensible index map. One such situation is when X is the gradient of
a fibrewise Morse-Bott function ¢) on F, that is a function 1 restricting to a Morse-Bott
function on each fibre. Recall that a Morse-Bott function ¢ : ' — R is one whose
critical set is a submanifold S of F' such that the Hessian of ¢ is nondegenerate on the
normal bundle to S in F'. Given such an X, the derivative dX gives an automorphism
of the normal bundle vz of Z in E. Choose a complementary bundle p such that the
sum vz @ p has constant dimension, that is v; & u = Z x R” for some n. One-point
compactification of dX @ id yields the index map Ind(X) as before.

Theorem 4.3. Letn: E — B be a fibre bundle over a compact base with closed manifold
fibre. Let X be a vertical vector field on E that is the gradient of a fibrewise Morse-Bott
function. Denote the zero set of X by Z, the bundle Z — B by ng, the index of X by
Ind(X), and the transfers for the two bundles x(n) and x(ns) respectively. The diagram

B&Q(Eﬂ

x(ns)i TQ(inC)
Q(Z5) Ind(X) Q(Z4)

commutes up to homotopy.

The proof is the same as for the previous theorem. This theorem 4.3 can be applied
iteratively, computing the transfer of a bundle in terms of a subbundle, then the transfer
of the subbundle in terms of its subbundles, and so on.

10
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We conclude with a simple transfer computation which utilizes theorems 4.2 and 4.3.
Let ® : S"~1 — SO(k+1) be the clutching map defining an orthogonal S*-bundle over S™,
with n > 2. This S¥-bundle ¢ is the unit sphere bundle of the vector bundle ¢ associated
to the clutching map ®. Let J(®) € 7¥_, denote the image of the map ® under the J-

homomorphism. We compute the fibrewise euler characteristic S™ X9, Q(EL) — Q(SY)

of the bundle ¢ in terms of J(®).

Using a Morse-Bott function on the fibrewise suspension ¢ of ¢ we express the
transfer of the bundle ¢ in terms of the transfer of its suspension; then using a (different)
Morse function we compute the transfer of this suspension. Consider ¥¢ to be the unit
sphere bundle in the direct sum ¢ @ R of the R¥*!-bundle ¢ with the trivial line bundle
R over S™ and let h : ¢ ® R — R — R denote projection. The function h? is fibrewise
Morse-Bott on ¢ and its gradient has zero set ¢ LI S™ Ll S™, that is the sphere bundle
¢ in ¢ x {0} disjoint union the two trivial bundles S® — S™ in ¢ x {1} and ¢ x {—1}.
The index map is the identity at the two S™ components and is a reflection along R at
¢. Let X(n) denote the transfer x(n) : B — Q(F.) of a bundle n composed with the
map Q(E,) — Q(S°). Theorem 4.3 implies that Y(X¢) = 2 — X(¢).

Alternatively, consider the Morse function h on X¢. Its gradient has zero set S™ LIS™.
The index is trivial on one S™ and thus (by 4.2) the transfer is x¥(X¢) = 1+ 7, where
718" — Q(S%) is given as follows. Choose a complementary vector bundle w to the
bundle ¢ and identify ¢ @ w with the trivial bundle RY x S® — S™. Define a map © as
follows:

5" 2 O(N)
xH(RN%gpx@wxﬂgpx@wx%’RN).

The transfer summand 7 is the stabilized one-point compactification of ©. Notice that
7 = J(0) + deg(7), where deg(r) € {£1} is the image component of 7 in Q(S°); this
degree deg(7) is plus or minus one as the dimension of the fibre sphere S* is odd or even
respectively. Given the earlier calculation of X(3¢) in terms of X(¢), we have

X(¢) =1—7=1-deg(r) = J(©) = x(S") - J(O).

We identify © as (stably) (—1)**1(n - ®), where 7 is now the nontrivial element of
the first stable stem 5. Let ¥ denote the vector bundle on S"*! corresponding to the
clutching map ©, as ¢ is the bundle on S corresponding to ®. In the chain complex
formulation of k-theory ([1], section 10), the bundle n on (S',*) = ([-1,1],{-1,1}) is
represented by the following complex of bundles on I = [—1,1]:

O—)K;R—)O,
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Here the map is multiplication by ¢ € I on the fibre R,. The product bundle n ® ¢ on
(S ) =2 (I x S, ({—1,1} x S*) U (I x %)) is then given by the complex

O—>R®gpi@iﬁ®gp—>0.

This complex of bundles on I x S™ is simply
0— ¢ Lup — 0,

where we have not distinguished between the bundle ¢ on S™ and its pullback to I x S™;
similarly we let w also denote the pullback of w to I x S”. Adding an acyclic complex to
the preceding complex gives

O%@@wﬂw@w—w.

The k-theory class of this complex on (I x S™, ({—1,1} x S™) U (I x %)) corresponds to
the reduced k-theory class of ¢ on S"*!. This reduced identification ¥ = n ® ¢ gives a
homotopy © =~ (—1)*"1(n - ®) of maps from S to the stable orthogonal group Oj; (note
that the sign merely ensures that the maps land in the same component of O).

This description of © implies that

X(¢) = x(8*) = J(©) = x(S*) +n- J(®) € [S", Q(S")],

where we have used the fact that the J-homomorphism commutes with multiplication
by 7 in degrees larger than 2, and that n has order 2. This result agrees with the
homotopy-theoretic computation of the transfer for sphere bundles in [3].
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