Classics in Algebraic Topology

Course schedule (MT2011)

1. Overview, the sixties.
2. Kervaire, A manifold which does not admit any di fferentiable structure.
3. Milnor, On manifolds homeomorphic to the 7-sphere.
4. Kervaire II.
5. Milnor II.
6. Kervaire-Milnor, Groups of homotopy spheres.
7. Serre, Homologie singuliere des espaces fi bres.
8. Serre II.
9. Borel, La cohomologie mod 2 de certains espaces homogenes.
10. Serre, Cohomologie modulo 2 des complexes d’Eilenberg-Maclane.
11. Quillen, Homotopical algebra.
12. Quillen II.
13. Segal, Categories and cohomology theories.
14. Adams, Quillen’s work on formal groups and complex cobordism.
15. Adams II.
16. Thom, Quelques proprietes globales des varietes di fferentiables.
17. Thom II.
18. Adams-Atiyah, K-theory and the Hopf invariant.
19. Atiyah-Bott-Shapiro, Clifford algebras.
20. Atiyah-Bott-Shaprio II.